skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reimer, Jeffrey A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 23, 2026
  2. Quantum sensors have notably advanced high-sensitivity magnetic field detection. Here, we report quantum sensors constructed from polarized spin-triplet electrons in photoexcited organic chromophores, specifically focusing on pentacene-doped para-terphenyl ( 0.1 % ) . We demonstrate essential quantum sensing properties at room temperature (RT): optically generated electronic polarization and state-dependent fluorescence contrast by leveraging differential pumping and relaxation rates between triplet and ground states. We measure high optically detected magnetic resonance contrast 16.8 % of the triplet states at RT, along with long coherence times under spin echo and Carr-Purcell-Meiboom-Gill (CPMG) sequences, T 2 = 2.7 µ s and T 2 DD = 18.4 µ s , respectively, limited only by the triplet lifetimes. The material offers several advantages for quantum sensing, including the ability to grow large (cm scale) crystals at low cost, absence of paramagnetic impurities, and electronic diamagnetism when not optically illuminated. Utilizing pentacene as a representative of a broader class of spin triplet- polarizable organic molecules, this paper highlights the potential for quantum sensing in chemical systems. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. Nanoparticle organic hybrid materials (NOHMs) have been proposed as excellent electrolytes for combined CO2capture and electrochemical conversion due to their conductive nature and chemical tunability. However, CO2capture behavior and transport properties of these electrolytes after CO2capture have not yet been studied. Here, we use a variety of nuclear magnetic resonance (NMR) techniques to explore the carbon speciation and transport properties of branched polyethylenimine (PEI) and PEI-grafted silica nanoparticles (denoted as NOHM-I-PEI) after CO2capture. Quantitative13C NMR spectra collected at variable temperatures reveal that absorbed CO2exists as carbamates (RHNCOOor RR′NCOO) and carbonate/bicarbonate (CO32−/HCO3). The transport properties of PEI and NOHM-I-PEI studied using1H pulsed-field-gradient NMR, combined with molecular dynamics simulations, demonstrate that coulombic interactions between negatively and positively charged chains dominate in PEI, while the self-diffusion in NOHM-I-PEI is dominated by silica nanoparticles. These results provide strategies for selecting adsorbed forms of carbon for electrochemical reduction. 
    more » « less
  4. Lithium transference in a multivalent electrolyte containing bulky, star-shaped anions is compared using three experimental techniques, namely, electrochemical polarization, PFG-NMR and electrophoretic NMR. 
    more » « less
  5. We demonstrate that contrary to previous reports, transference number decreases with increasing degree of polymerization in non-aqueous lithium-bearing polyelectrolyte solutions that have been proposed as next-generation battery electrolytes. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)